类型为含有多个禁止位置的路线问题
h行w列矩阵,从左上角出发,只能向右或下走,且有n个禁止位置,求到右下角的路线数
\(1 \leq h, w \leq 10^5, 1 \leq n \leq 2000\)容斥,对禁止位置排序,考虑到达第i个禁止位置的不经过其他禁止位置的路线,它可以通过容斥,用前i-1个更新。
复杂度\(O(n^2)\)#include#include #include #define MOD 1000000007using namespace std;typedef long long LL;int h, w, n;const int maxn = 2e3 + 10;const int maxhw = 2e5 + 10;LL ans[maxn];int fact[maxhw], inv[maxhw], INV[maxhw];struct node { int x; int y;} pn[maxn];bool cmp(const node& A, const node& B) { return A.x == B.x ? A.y < B.y : A.x < B.x;}void init() { fact[0] = fact[1] = 1; inv[0] = inv[1] = 1; INV[0] = INV[1] = 1; for (int i = 2; i < maxhw; i++) { fact[i] = (LL)fact[i - 1] * i % MOD; inv[i] = (LL)(MOD - MOD / i) * inv[MOD % i] % MOD; INV[i] = (LL)inv[i] * INV[i - 1] % MOD; }}int main() { init(); scanf("%d%d%d", &h, &w, &n); for (int i = 0; i < n; i++) { scanf("%d%d", &pn[i].x, &pn[i].y); } sort(pn, pn + n, cmp); pn[n].x = h; pn[n].y = w; for (int i = 0; i <= n; i++) { int x = pn[i].x; int y = pn[i].y; ans[i] = (LL)fact[x + y - 2] * INV[x - 1] % MOD * INV[y - 1] % MOD; for (int j = 0; j < i; j++) { int nx = pn[j].x, ny = pn[j].y; if (nx > x || ny > y) continue; ans[i] = (ans[i] - ans[j] * fact[x - nx + y - ny] % MOD * INV[x - nx] % MOD * INV[y - ny] % MOD ) % MOD; } } printf("%lld\n", (ans[n] + MOD) % MOD); return 0;}